Biomineralisation of fipronil and its major metabolite, fipronil sulfone, by Aspergillus glaucus strain AJAG1 with enzymes studies and bioformulation
نویسندگان
چکیده
Fipronil is a phenylpryazole insecticide which is extensively used for the protection of agricultural yields. However, this insecticide poses various threats to the environment. Therefore it is essential to develop an effective method to degrade or eliminate this pollutant from the environment. In this present study, a fungal strain AJAG1 capable of degrading fipronil and its metabolite, fipronil sulfone, was isolated through enrichment technique. Isolated fungal strain was identified as Aspergillus glaucus based upon its morphological, and 18S rRNA sequence analysis. Strain AJAG1 could degrade 900 mg L-1 of fipronil efficiently in both aqueous medium and soil. In addition, fipronil degradation was tested with various kinetic models and the results revealed that biodegradation in aqueous medium and soil was ascertained by pseudo-first order and zero order rate kinetics, respectively. The infrared spectrum of fipronil degraded sample confirmed the formation of esters, nitro, and alkanes groups. A tentative degradation pathway of fipronil by strain AJAG1 has been proposed on the basis of gas chromatography-mass spectrometry (GC-MS) analysis. The lignolytic enzymes activities were studied during fipronil degradation by strain AJAG1. Further, scanning electron microscopy (SEM) was used to examine the surface morphology of strain AJAG1 after fipronil degradation. In the present investigation, bioformulation of strain AJAG1 was developed using low cost materials such as groundnut shell powder, molasses, and fly ash to remediate the fipronil from agricultural field. These results highlight A. glaucus strain AJAG1 may have potential for use in bioremediation of fipronil-contaminated environment.
منابع مشابه
In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis.
In vivo and in vitro metabolism of [14C]fipronil was examined in a susceptible European corn borer (Ostrinia nubilalis, Hübner) laboratory strain. [14C]Fipronil penetrated the larval integument slowly, with 71.5% of the applied radioactivity recovered from surface rinses 24 h after topical application. Despite this slow penetration, radioactivity was detected in both the excrement and internal ...
متن کاملSulfone metabolite of fipronil blocks gamma-aminobutyric acid- and glutamate-activated chloride channels in mammalian and insect neurons.
Fipronil sulfone, a major metabolite of fipronil in both insects and mammals, binds strongly to GABA receptors and is thought to play a significant role in poisoning by fipronil. To better understand the mechanism of selective insecticidal action of fipronil, we examined the effects of its sulfone metabolite on GABA- and glutamate-activated chloride channels (GluCls) in cockroach thoracic gangl...
متن کاملFipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes.
Fipronil is a widely used phytosanitary product and insecticide for pets. In the rat, fipronil can disrupt thyroid function by decreasing plasma concentrations of total thyroxine (T4) likely through increased T4 clearance. However, the mechanism of fipronil action on thyroid function remains unclear. The goals of the present study were to evaluate the effects of fipronil on thyroid hormone (TH)...
متن کاملCYP450-dependent biotransformation of the insecticide fipronil into fipronil sulfone can mediate fipronil-induced thyroid disruption in rats.
In rats, the widely used insecticide fipronil increases the clearance of thyroxine (T(4)). This effect is associated with a high plasma concentration of fipronil sulfone, the fipronil main metabolite in several species including rats and humans. In sheep, following fipronil treatment, fipronil sulfone plasma concentration and thyroid disruption are much lower than in rats. We postulated that fi...
متن کاملSurvival, growth, and body residues of hyalella azteca (Saussure) exposed to fipronil contaminated sediments from non-vegetated and vegetated microcosms.
We assessed chronic effects of fipronil and metabolite contaminated sediments from non-vegetated and Thallia dealbata vegetated wetland microcosms on Hyalella azteca during wet and dry exposures. Mean sediment concentrations (ng g(-1)) ranged from 0.72-1.26, 0.01-0.69, 0.07-0.23, and 0.49-7.87 for fipronil, fipronil-sulfide, fipronil-sulfone, and fipronil-desulfinyl, respectively. No significan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017